

 HoTT for Cools

1 Preface

Homotopy Type Theory is an exciting and relatively new area of mathematics. The main resource for learning it is a Free/Open Source book with the same name: Homotopy Type Theory: Univalent Foundations of Mathematics. I’m currently reading it and I decided to publish notes that I’m taking from it. For each chapter of the original book we have a corresponding chapter with the same name containing a cheat sheet of theorems of that chapter and some extra notes.

1.1 Disclaimer

	I am not a mathematician

	I am not a native English speaker

So be prepared for lots of mathematical or grammatical mistakes. However, this is a free book, so you can help me make it better. See the How to Contribute section.

	This book is a work in progress and will change frequently:

So always check that you have the latest release.

1.2 How to Contribute

This is a libre/open source project. It is hosted on GitLab and any contribution is welcomed and highly appreciated.

[TODO] Add detailed information on how to commit to a git repository for beginners.

1.2.1 List of Contributors

1.3 Acknowledgment

This book and most of its latex macros is based on the Homotopy Type Theory: Univalent Foundations of Mathematics book.

The PDF, web pages and e-books are produced with scripts around pandoc and other free software. see the GitLab page.

1.4 License

Except As Otherwise Noted, This Work Is Licensed Under A Creative Commons Attribution-ShareAlike 4.0 International License. To View A Copy Of This License, Visit: https://creativecommons.org/licenses/by-sa/4.0/

Code Samples Are Licensed Under The GNU General Public License v3.0. To View A Copy Of This License, Visit: https://www.gnu.org/licenses/gpl-3.0.en.html

2 Introduction

“Tell readers that Introduction is not essential for book understanding”1

The introduction gives a bird’s-eye overview of Homotopy type theory and its relation to other fields of mathematics. Unfortunately it intimidates newcomers and they might think that they won’t be able to understand the rest of the book. The good news is that the book is almost self sufficient. Although there is one subject that needs more explanation and that is Category theory. As one of the authors says:

“I think we did a fairly good job of not assuming too much background in topology and in type theory, but we did use a fair number of category-theoretic concepts without really explaining them in much detail”2

So it is a good idea to have an introduction to category theory. I don’t know much about category theory either, so if you do, and you want to contribute, please let us know by opening an issue on our GitLab.

With that being said, there is a great introductory video series on category theory by Steve Awodey on youtube: Category Theory Foundations, Lecture 1

	Andrej Bauer (https://github.com/HoTT/book/issues/727, 2014).↩

	Mike Shulman (https://github.com/HoTT/book/issues/733, 2014).↩

3 Category theory

This chapter contains an introduction to category theory. Category theory is one of the preliminaries to the HoTT book that isn’t discussed in much details. In this chapter we will try to give you a super simple foundation of it.

4 Type theory

4.1 Type theory versus set theory

Proposition: A statement susceptible to proof.

Theorem: A proposition that has been proven.

Deductive system: A collection of rules for deriving judgments.

Judgment (first order logic): For the proposition
, “
 has a proof” is a judgment.

Judgment (type theory):
 is the basic judgment and pronounced as “the term
 has type
”.

Propositions are types: Finding an element of a type is proving that proposition. Thus we call an element of a type a witness or an evidence of the truth of a proposition.

Propositional equality: When
 is inhabited, we say that
 and
 are propositionally equal.

Judgmental (or definitional) equality: When two expressions are equal by definition. You expand and compute the definitions and conclude that they are equal. We write it as
 or simply
. Use
 to introduce definitional equality.

Assumption:
, where
 is a variable and
 is a type.

Context: The collection of all such assumptions.

Type former: A way to construct types, together with rules for the construction and behavior of elements of that type.

For the rest of this chapter we will introduce these type formers:

	Function types

	Universes and families

	Dependent function types (
-types)

	Product types

	Dependent pair types (
-types)

	Coproduct types

	The type of booleans

	The natural numbers

	Pattern matching and recursion

	Propositions as types

	Identity types

	Path induction

	Equivalence of path induction and based path induction

	Disequality

	English
	Type Theory

	True
	

	False
	

	
 and

	

	
 or

	

	If
 then

	

	
 if and only if

	

	Not

	

	For all
,
 holds
	

	There exists
 such that

	

How to introduce a new kind of type:

	Formation rules: How to form new types of this kind.

	Introduction rules (type’s constructors): How to construct elements of that type by:

	Direct definition

	
-abstraction: When we don’t want to introduce a name for the function.

	Elimination rules (type’s eliminators): How to use elements of that type.

	Computation rule (
-reduction): How an eliminator acts on a constructor.

	Uniqueness principle (
-expansion) (optional): Expresses the uniqueness of maps into or out of that type.

	Propositional uniqueness principle (optional): When the uniqueness principle is not taken as a rule of judgmental equality, we can prove it as a propositional equality from the other rules for the type.

4.2 Function types

	Formation rules: Given types
 and
, we can construct the type
 of functions with domain
 and codomain
.

	Introduction rules:

	Direct definition: Defining
 by
 where
 is a variable and
 is an expression which may use
.

	
-abstraction:

	Elimination rules: Given a function
 and an element of the domain
, we can apply the function to obtain an element of the codomain
, denoted
 and called the value of
 at
.

	Computation rule:
 where
 is the expression
 in which all occurrences of
 have been replaced by
.

	Uniqueness principle:
. It shows that
 is uniquely determined by its values.

4.3 Universes and families

Universe: a type whose elements are types.

Hierarchy of universes:
 where every universe
 is an element of the next universe. We assume that they are cumulative: All the elements of the
 universe are also elements of the
 universe.

Typical ambiguity: Omitting the level
 for convenience.

Families of types: Using functions
 whose codomain is a universe to model a collection of types varying over a given type
.

4.4 Dependent function types

	Formation rules: Given a type
 and a family
, we may construct the type of dependent functions
.

	Introduction rules:

	Direct definition: To define
, where
 is the name of a dependent function to be defined, we need an expression
 possibly involving the variable
, and we write

	
-abstraction:

	Elimination rules: Applying
 to an argument
 to obtain an element
.

	Computation rule: Given
 we have
 and
, where
 is obtained by replacing all occurrences of
 in
 by
.

	Uniqueness principle:
 for any
.

Polymorphic function: A class of dependent function types which takes a type as one of its arguments and acts on elements of that type.

4.5 Product types

	Formation rules: Given types
 we introduce the type
, which we call their cartesian product.

	Introduction rules:

	Direct definition: Given
 and
, we may form
.

	
-abstraction:

	Elimination rules: For any
, we can define a function
 by

	Computation rule:

	Propositional uniqueness principle: Every element of
 is a pair.

Unit type: We call the nullary product type the unit type
. The only element of
 is some particular object
.

5 Homotopy type theory

“We seem to get a fair number of people who hit the beginning of chapter 2 and think”oh no, I don’t know what an
-groupoid is" and get stuck “…”I would like the message of the book to be that you don’t need to already know what an
-groupoid is; you can learn what one is by learning to work with types. But even with that goal, it seems that we have to give some intuitive picture of what this is supposed to mean, and we also have to make connections for the readers who do know what an
-groupoid is. Maybe for the 2nd edition we can find some better way of reconciling these goals" Mike Shulman1

	(https://github.com/HoTT/book/issues/740, 2014).↩

6 To Be Continued…

As I said in the Preface I’m currently reading the original HoTT book and this is a work in progress. So stay tuned and always check for the newest version at https://www.mehranbaghi.com/hott_for_cools/.

Bibliography

Bauer, Andrej. https://github.com/HoTT/book/issues/727, 2014.

Shulman, Mike. https://github.com/HoTT/book/issues/733, 2014.

———. https://github.com/HoTT/book/issues/740, 2014.

HoTT for Cools
	1 Preface	1.1 Disclaimer
	1.2 How to Contribute	1.2.1 List of Contributors

	1.3 Acknowledgment
	1.4 License

	2 Introduction
	3 Category theory
	4 Type theory	4.1 Type theory versus set theory
	4.2 Function types
	4.3 Universes and families
	4.4 Dependent function types
	4.5 Product types

	5 Homotopy type theory
	6 To Be Continued…
	Bibliography

 	
 Cover

